

Engineeri Definition	_	Compressive Strangth (MPa) 0.1 1 10 100 weak strong low strength medium strength mod. weak mod. strong	(Coates, 1964) (Dorre and Miller, 1966) (Geol. Society, 1970)
soil stone	(Morgenstern and Eigenbrod, 1974)	soil v. low to low str. medium strength	(Broch and Franklin, 1972)
Standard Penetration Test, N (Blows per Foot) 0 100 200 300 400		soil v. soft to soft rock hard rock	(Jennings, 1972)
soil H weathered rock unweathered rock	(White and Richardson, 1987)	soil v. low to low strength med. strength	(Bieniawski, 1973)
soil- partly weathered rock saprolite	(Sowers, 1973)	low strength mod. strength	(ISRM, 1979)
RQD (%)	The second R Second of	very weak moderately weak moderately strong	(Geol. Society, 1977)
0 25 50 75 100 Weak Strong Weak Strong	(Coates, 1970) (Smith et al. 1991)	non-durable durable soil rock	(Welsh, et al, 1991) (Morgenstern and Eigenbrod, 1974)
partially weathered rock rock weathered rock rock weathered rock rock	(Sowers, 1973) (Deere and Patton, 1971) (Law Engineering, 1980)	weak strong soil weak rock rock	(Kulwahy, et al, 1991) (Hatheway, 1990)
Seismic Wave Velocity (feet per second) 0 2000 4000 6000 8000 10,000 weak stored unweathered rock rippable shale non-rippable shale	(Oberneir, 1979) (White and Richardson, 1987) (Cateryillar, 1996, for D-9 Dozer)	weak medium strength highly weathered H mod weath'd soil rock weak strong	(Farmer, 1983) (Lee and deFreitas, 1989) (Franklin and Chandra, 1972) (Brown, 1981)
sure 2 Identification of weak rock on the basis of streng	th-related tests.	soil weak rock strong rock	(ISSMFE, 1985)

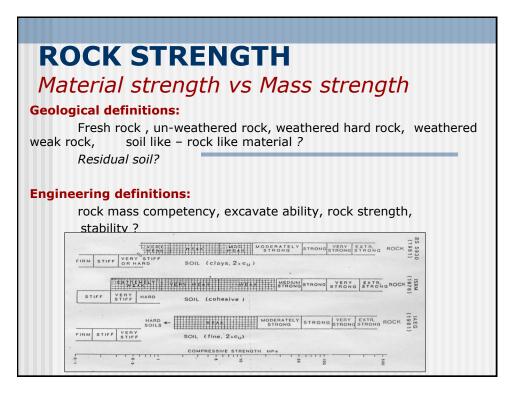
Rock Characterization Testing and Monitoring ISRM Suggested Methods of Testing – 1981, 1985

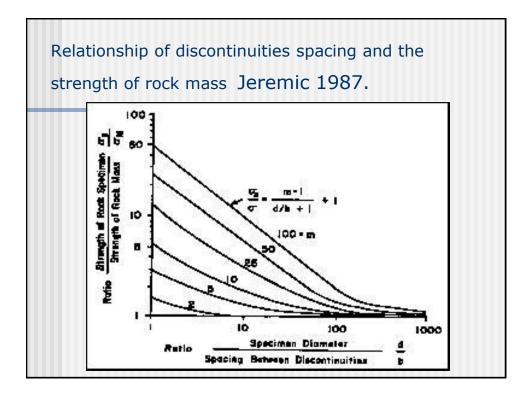
a) Site Characterization

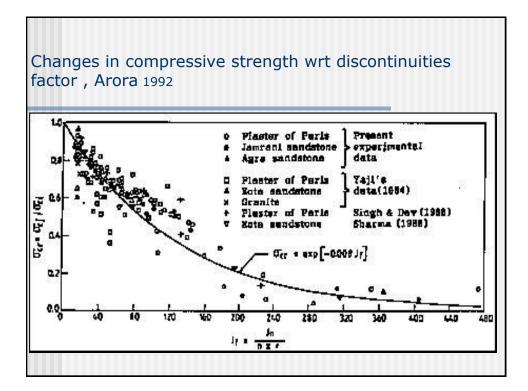
Qualitative description of discontinuities
Geophysical logging of boreholes

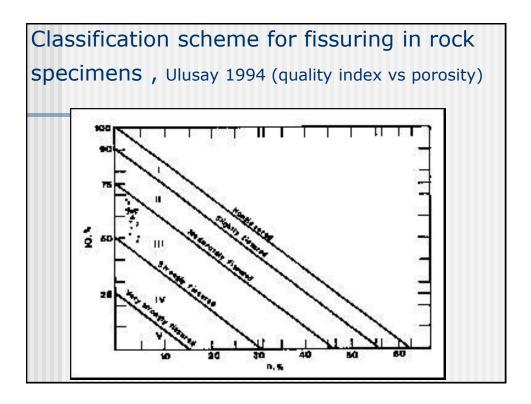
b) Laboratory and Field Testing

Laboratory Index Tests for Characterization


- Physical properties: water content, porosity,void index
- Swelling pressure and swelling strain
- Slake durability
- Uniaxial compressive strength
- Uniaxial deformability (E, v)
- Point load strength index
- Resistance to abrasion (LA test)
- Hardness (Schmidt Rebound)
- Sonic velocity
- Petrographic description (demo)

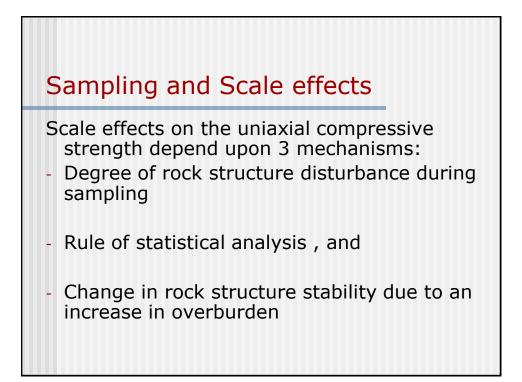

Rock Characterization Testing and Monitoring

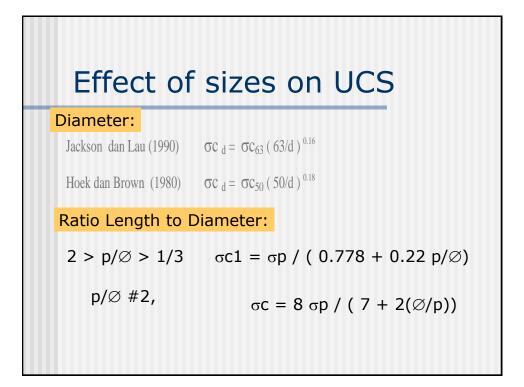

ISRM Suggested Methods of Testing – 1981, 1985

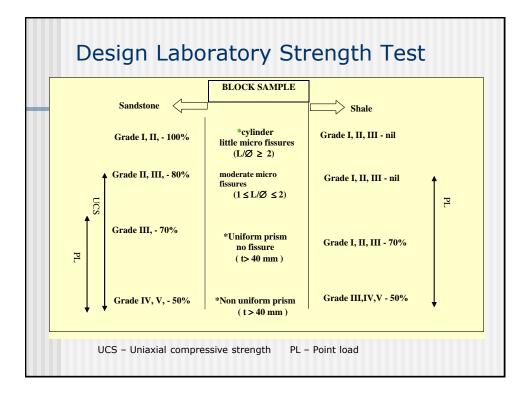

- Laboratory Design tests
- Triaxial strength
- Direct tensile strength
- Indirect (Brazil) tensile strength
- Direct shear test (field method)
- Permeability (demo)
- Time dependent and plastic properties

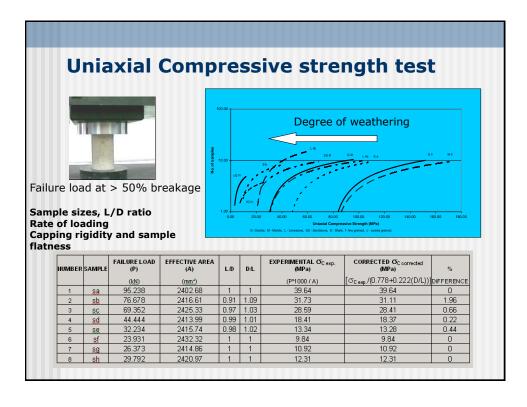
Field 'Design Tests' Field Monitoring (*Early warning system for monitoring slopes*..?) Field 'Quality Control tests'

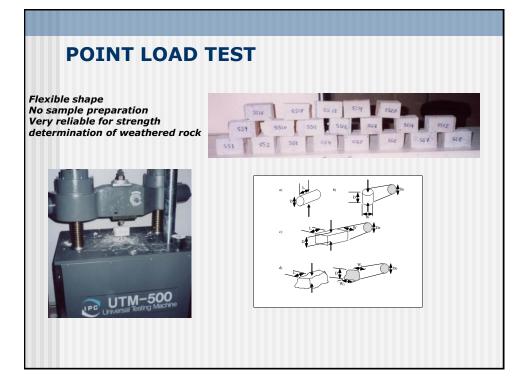
Rock strength- laboratory testing

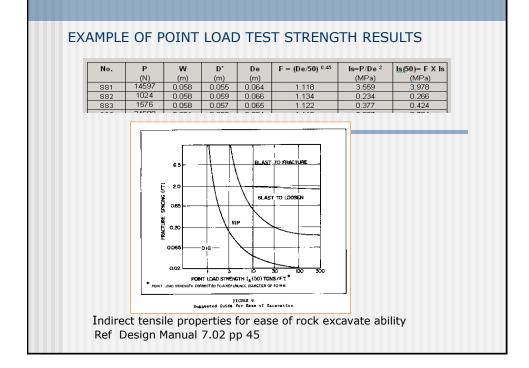

-Bigger sample has lower strength due to presence of fracture and fissures


-Mechanical properties of rock has strong correlation with its petrography characteristics

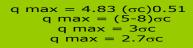

-Higher rock density has higher strength linearly proportionate


-Uniaxial compressive strength reduces with increase in pore volume


-There is a correlation between rock density, Elastic modulus and stiffness modulus



		beban titik	(MPa)			
Batuan	Gred	Luluhawa /	Kekuatan	Beban	Titik	Rujukan
	Ι	II	III	IV	V	
Agglomerat	6.08	3.14	0.98	0.39	-	Turk et al.(1994)
Andesit	5.40	3.04	2.60	0.64	-	Turk et al.(1994)
Syal (klo)	2.82	1.68	1.13	1.23	0.82	Beavis et al.(1982)
Syal (dol)	3.98	2.42	2.33	1.20	-	Beavis et al.(1982)
Andesit	13.40	4.12	2.50	0.20	-	Pasamehmetoglu et al.(1981
Granodiorit	11.00	9.00	7.00	6.00	0.60	Irfan & Powel (1985)
Granit	10.00	5.20	1.70	0.30	-	Irfan & Dearman (1978)
Granit	7.10	4.10	2.70	2.00	1.10	Dearman & Irfan (1978)
Granit	9.10	7.20	4.70	3.00	-	Dearman & Irfan (1978)


Class		Description	Uniaxial Com	pressive S	trength kN/m ²
A B C D E	Hig Me Lov	y High Strength h Strength dium Strength v Strength y Low strength	>32000 6000 - 32000 8000 - 16000 4000 - 8000 <4000	55000	- 220000 -110000 - 55000
Rock II <u>y</u>	хре	Compressives MN/m	 TangentMö MN/m² x i		Moduluszóf Rupture MN/m²
Rock II <u>y</u> Graniite Greenst					Rupture
Graniite Greenst Sandisto	one ne	MN/m ² 160 – 295 115 – 315 33 – 235	 MN/m ² x 1 15 – 75 50 – 60 10 – 50		Rupture MN/m ² 8 – 27 12 – 46 4 – 25
Graniite	one ne ne	MN/m 160 – 295 115 – 315	 MN/m ² x 1 15 – 75 50 – 60		Rupture MN/m ² 8 – 27 12 – 46

CLASSIFICATION BY UNIAXIAL COMPRESSIVE STRENGTH

Table 2 Classification of rock by strength (from Attewell & Farmer 1976).

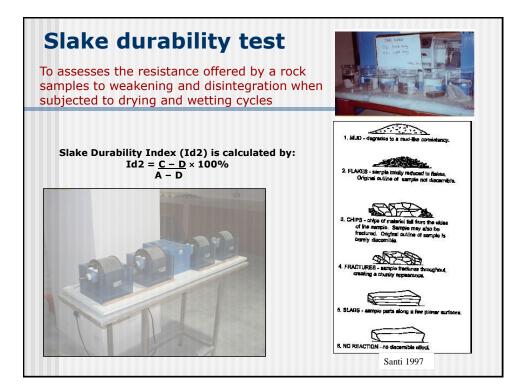
Strength classification	Strength range (MPa)	Typical rock types
Very weak	10-20	Weathered and weakly-compacted sedimentary rocks
Weak	20-40	Weakly-cemented sedimentary rocks, schists
Medium	40-80	Competent sedimentary rocks; some low-density coarse- grained igneous rocks
Strong	80-160	Competent igneous rocks; some metamorphic rocks and fine-grained sandstones
Very strong	160-320	Quartzites; dense fine-grained igneous rocks

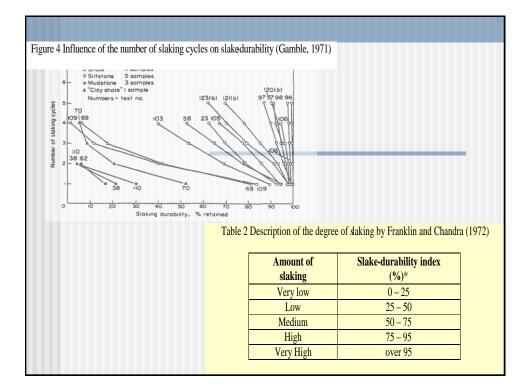
Correlation of rock mass and material strength (Bhasin et al 1998)

Foundation on rock: Presumed bearing capacity?

Correlation Point load strength and Uniaxial Compressive strength JADUAL 4.4 Kolerasi kekuatan mampatan sepaksi dengan kekuatan beban titik Rujukan Ungkapan σ (MPa) Jenis Batuan D'Andrea et al.(1964) $\sigma = 15.3 \ Is_{50} + 16.3$ ignious,sedimen, Deere & Miller (1966) $\sigma \ = 20.7 \ Is_{50} + 29.6$ metamorf Broch & Franklin (1972) $\sigma = 24 \ Is_{50}$ granit $\sigma = 23 \text{ Is}_{50}$ Bieniawski (1975) kuarzit dan batu pasir Hassani et al.(1980) $\sigma = 29 \text{ Is}_{50}$ Gunsallus & Kulhawy (1984) $\sigma = 16.5 \text{ Is}_{50} + 51$ arang batu " $\sigma = 18.7 \text{ Is}_{50} - 132$ Singh (1981) batuan lemah Mehrotra et al.(1991) $\sigma = 26 \text{ Is}_{50}$ * $\sigma = 21.8 \text{ Is}_{50} + 6210$ O'Rourke (1989) Ghosh & Srivastava (1991) $\sigma = 16 \text{ Is}_{50}$ Tsidzi (1991) $\#\sigma = (Is_{50}/0.03) + 0.003Is_{50}$ Unal et al.(1992) $\sigma = 16.57 \text{ Is}_{50} + 2.127$ batuan sedimen Ulusay et al.(1994) $\sigma = 19 \text{ Is}_{50} + 12.7$ batu pasir Lashkaripour et al.(1995) $\sigma = 20.238 \text{ Is}_{50}$ syal Wiesner et al.(1997) $\sigma = 18.6 \text{ Is}_{50} \pm 11.7$ batu pasir Tugrul et al.(1999) $\sigma = 15.25 \text{ Is}_{50}$ basalt

JADUAL	4.5 Penge	elasan jasad	batuan be	rdasarkan I _{S50}	o dan persa	imaan σ
	Brooch d	an Franklin				
	(19	972)	Bienia	wski (1976)	Zha	io (1995)
Penerangan	Batuan	sedimen	Batua	n sedimen	Granit	
	Is ₅₀	Persamaan	Is ₅₀	Persamaan	Is ₅₀	Persamaan
	(MPa)	σ (MPa)	(MPa)	σ (MPa)	(MPa)	σ(MPa)
Teramat kuat	> 10	> 160	> 8	> 200	tiada	> 180
Sangat kuat	3 - 10	50 - 160	4 - 8	100 - 200	>8	110 - 180
Kuat	1 - 3	15 - 60		50 - 100	5 - 8	50 - 110
Sederhana kuat	0.3 - 1.0	5 - 16	2 - 4	25 - 50	2 - 5	< 50
Lemah	0.1 - 0.3	1.6 - 5.0	1 - 2	10 - 25	< 2	< 1
Sangat lemah	0.03 - 0.1	0.5 - 1.6	-	3 - 10	-	< 1
Tersangat						
lemah	< 0.03	< 0.5	-	1 - 3	-	-


Rujukan	Ungkapan E ₅₀	Batuan
ashkaripour et al.(1995)	$E_{50} = 0.119 \ \sigma c^{1.117}$	syal arang batu
upta et al. (1998)	$E_{50} = 80.5 \sigma c^{1.3}$	kuarzit
Chern et al.(1998)	$E_{50} = 10^{(1.212 \log \sigma c - 1.059)}$	batuan metamorf
ugrul et al.(1999)	$E_{50} = 0.35 \sigma c - 12$	batuan granit
JADUAL 4.7 Koleras	50	si dengan kekuatan regangan
	50	si dengan kekuatan regangan Batuan/ limitasi
JADUAL 4.7 Koleras Rujukan	i kekuatan mampatan sepak	
	i kekuatan mampatan sepak	
Rujukan .ashkaripour et al.(1995)	i kekuatan mampatan sepak Ungkapan σc	Batuan/ limitasi
Rujukan	i kekuatan mampatan sepak Ungkapan σc σc = 4.021 + 11.131 σt	Batuan/ limitasi syal arang batu (cc > 10 ct)

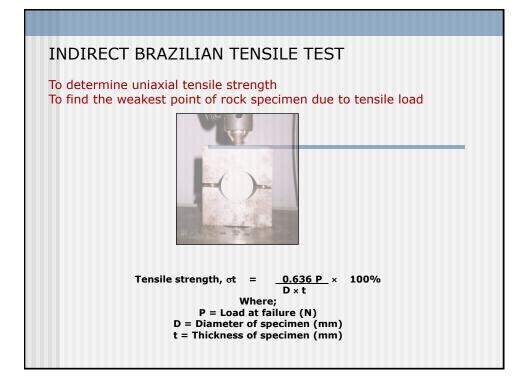

L

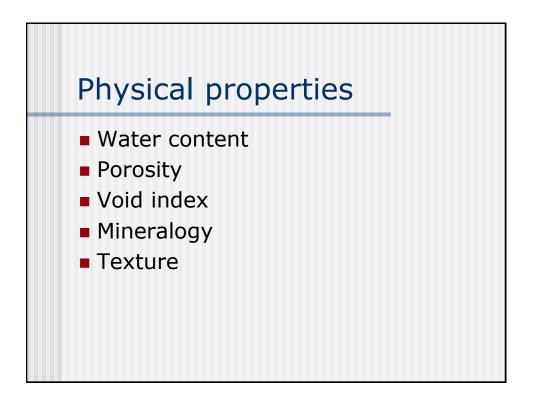
JADUAL 4.8 Kolera	si kekuatan mampatan sepaksi	dengan sifat fizikal
Rujukan	Ungkapan σc	Batuan
Lashkaripour et al.(1995)	$\sigma c = 206.54 \text{ n}^{-0.945}$	syal arang batu
Tugrul et al.(1997)	$\sigma c = 134 n^{-0.8}$	basalt
Bhasin & Loset (1998)	$\sigma c = 1.01 \text{ x } e^{(0.001 \gamma R)}$	batuan lemah
Kate et al.(1998)	$\sigma c = 0.0007 (\gamma R)^{1.697}$	batuan sedimen
Tugrul et al.(1999)	$\sigma c = 8.36 \text{ R} - 416$	batuan granit
n- keliangan σc and Is ₅₀ unit MPa	γ - berat batuan seunit #σ - hubungkait lengkung linear	R- nombor tukul pantulan

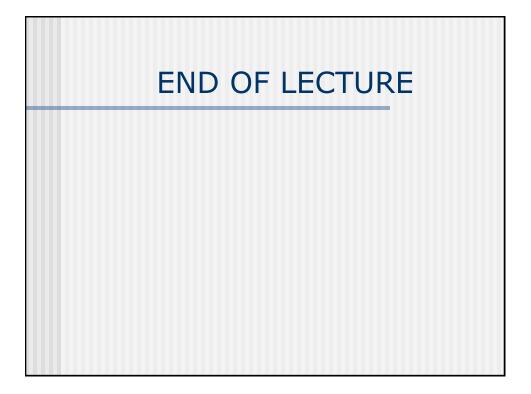
Rock Engineering in Malaysia

- Wet tropical weathering impact is very significant that caused strength reduction
- Influence of weathering differ with rock type
- Uniaxial strength index determination needs to be carefully correlated with the behaviour of rock mass
- A point load index can be an alternative testing method for weak and weathered rock material

Rebound Hardness (R)


9


To classify surface hardness and estimate the equivalent uniaxial compressive strength of rock indirectly and quickly


	Table 2		ered rock based on their characterize by <i>Geotechnical</i> <i>Hong Kong.</i> (Brand & Phillipson, 1984)
Types of hammer	Grade	Description	Typical Distinctive Characteristics
Size of samples	VI	Residual soil	Soil formed by weathering in place but with original texture of rock completely destroyed
Condition of surfaces before and after test	v	Complete decomposed rock	Rock wholly decomposed but rock texture preserved. No rebounds from N Schmidt hammer. Slakes readily in water. Geological pick easily indents surface when pushed.
	IV	Highly decomposed rock	Rock weakened, large pieces can be broken by hand. Positive N Schmidt rebound value up to 25. Does not slake readily in water. Geological pick cannot be pushed into surface. Hand Penetrometer strength index = 250 kPa. Individual grains may be plucked from surface.
	ш	Moderately decomposed rock	Completely discolored. Considerably weathered but possessing strength such that pieces 55 mm in diameter cannotbe broken by hand. N Schmidt rebound value 25 to 45. Rock material not friable.
	п	Slightly decomposed rock	Discolored along discontinuities. Strength approaches that of fresh rock. N Schmidt rebound value greater than 45. More than one blow of hammer to break specimen.
	Ι	Fresh rock	No visible sign of weathering not discolored.

Estimation of geomaterials strength base on hardness

Code	Strength (kN/m²)	Description
	(MN/m²)	ROCK & INDURATED MATERIALS
9	Very weak (0.6-1.25)	Easily broken by hand. Penetrated about 5mm with knife.
10	Weak (1.25-5.0)	Broken by leaning on sample with hammer. No penetration with knife. Scratched with thumbnail.
11	Mod. Weak (5,0-12,5)	Broken in hand with hammer, Scratched with knife,
12	Mod. Strong (12.5-50)	Broken against solid object with hammer.
<mark>13</mark>	Strong (50-100)	Difficult to break against solid object with hammer.
14	Very strong (100-200)	Requires many blows of hammer to fracture sample.
15	Extra strong (>200)	Sample only be chipped by hammer.

